June 07, 2018 Olimpiade, Teori Bilangan Belajar Modulo Dengan Cara Sederhana belajar matematika wacana statistika, soalnya kata modulo hampir menyerupai dengan kata modus. Perkiraan awal ternyata salah, berguru modulo itu yaitu berguru wacana teori bilangan. Teori Bilangan yaitu salah satu mata kuliah yang diajarkan oleh Bapak Prof.Drs.B.Panjaitan pada ketika kuliah di Universitas Negeri Medan [UNIMED] beberapa tahun yang lalu. Tapi sayang waktu kuliah kemarin belajarnya tidak optimal, jadi kini coba dipelajari lagi semampunya. Mari kita mulai dari diktat kuning yang ditulis pak profesor, dikatakan "Bilangan bundar $a$ membagi habis bilangan bundar $b$ [ditulis $a \mid b$] Bila dan hanya jika ada bilangan bundar $k$ sehingga $b=ak$. Jika $a$ tidak membagi habis $b$ maka ditulis $a \nmid b$" Contoh: $2 \mid 4$ sebab untuk $k=7$ sehingga $2k=14$ $5 \mid 30$ sebab untuk $k=6$ sehingga $5k=30$ $3 \nmid 10$ sebab tidak ada nilai $k$ sehingga $3k=10$ hal sederhana diatas menjadi info embel-embel bagi kita untuk mengenal modulo. Sebelum mempelajari modulo kita coba hal-hal sederhana berikutnya, contohnya dari pembagian $13:4=3\ sisa\ 1$, ada beberapa info yang kita sanggup yaitu $(i)$ $13$ dibagi $4$ sisa $1$ dan $(ii)$ $4$ faktor $(13-1)$. Penulisan dengan memakai modulo info $(i)$ $13$ dibagi $4$ sisa $1$ sanggup kita tulis menjadi $13\equiv 1\ mod\ (4)$. Contoh lain: $27\equiv 2\ mod\ \left ( 5 \right )$ artinya $27$ dibagi $5$ sisa $2$ $48\equiv 6\ mod\ \left ( 7 \right )$ artinya $48$ dibagi $7$ sisa $6$ $a\equiv b\ mod\ \left ( n \right )$ artinya $a$ dibagi $n$ sisa $b$ Hubungan modulo dengan keterbagian menyerupai yang kita sebutkan diawal yaitu: $27\equiv 2\ mod\ \left ( 5 \right )$ $\Rightarrow$ $5 \mid (27-2)$ atau $5$ faktor dari $(27-2)$ $48\equiv 6\ mod\ \left ( 7 \right )$ $\Rightarrow$ $7 \mid (48-6)$ atau $7$ faktor dari $(48-6)$ $13\equiv 1\ mod\ \left ( 4 \right )$ $\Rightarrow$ $4 \mid (13-1)$ atau $4$ faktor dari $(13-1)$ Kesimpulan sederhana dari modulo ini lebih memperhatikan sisa pembagian dari pada hasil pembagian. Secara umum sanggup kita tuliskan $a\equiv b\ mod\ \left ( n \right )$ $\Rightarrow $ $n \mid (a-b)$ atau $n$ faktor dari $(a-b)$ Kita coba diskusikan beberapa pola soal yang bisa dikerjakan dengan modulo, tetapi sebelumnya kita coba lihat teorema modulo berikut yang bisa kita terapkan pada soal yang berikutnya. $\left ( an+b \right )^{m}=\binom{m}{0}\left ( an \right )^{m}\cdot b^{0}+\binom{m}{1}\left ( an \right )^{m-1}\cdot b^{1}+\cdots +\binom{m}{m}\left ( an \right )^{0}\cdot b^{m}$ $\left ( an+b \right )^{m}=\left ( an \right )^{m}+\binom{m}{1}\left ( an \right )^{m-1}\cdot b^{1}+\cdots +b^{m}$ $\left ( an+b \right )^{m}=\overset{\underbrace{\left ( an \right )^{m}+\binom{m}{1}\left ( an \right )^{m-1}\cdot b+\cdots }}{habis\ dibagi\ n}+b^{m}$ dengan memakai modulo sanggup kita tulis menjadi; $\left ( an+b \right )^{m}$ dibagi $n$ sisa $b^{m}$ atau $\left( an+b \right )^{m}\equiv b^{m}\ mod\ \left ( n \right )$. Untuk lebih jelasnya kita coba dengan beberapa pola berikut; (1) Sisa $16^{2}$ dibagi $3$ adalah... $\left( 16 \right )^{2}= \left ( 5\cdot 3+1 \right )^{2}$ $\left( 16 \right )^{2}\equiv 1^{2}\ mod\ \left ( 3 \right )$ $\left( 16 \right )^{2}\equiv 1\ mod\ \left ( 3 \right )$ hasil selesai sisa $16^{2}$ dibagi $3$ yaitu $1$. (2) Sisa $17^{20}$ dibagi $5$ adalah... $\left( 17 \right )^{20}= \left ( 5\cdot 3+2 \right )^{20}$ $\left( 17 \right )^{20}\equiv 2^{20}\ mod\ \left ( 5 \right )$ $\left( 17 \right )^{20}\equiv \left (2^{3} \right )^{6}\cdot 2^{2}\ mod\ \left ( 5 \right )$ $\left( 17 \right )^{20}\equiv 8^{6}\cdot 2^{2}$ $\left( 17 \right )^{20}\equiv \left (5+3 \right )^{6}\cdot 4\ mod\ \left ( 5 \right )$ $\left( 17 \right )^{20}\equiv 3^{6}\cdot 4\ mod\ \left ( 5 \right )$ $\left( 17 \right )^{20}\equiv 9^{3}\cdot 4\ mod\ \left ( 5 \right )$ $\left( 17 \right )^{20}\equiv \left (5+4 \right )^{3}\cdot 4\ mod\ \left ( 5 \right )$ $\left( 17 \right )^{20}\equiv \left (4 \right )^{3}\cdot 4\ mod\ \left ( 5 \right )$ $\left( 17 \right )^{20}\equiv \left (4 \right )^{4} mod\ \left ( 5 \right )$ $\left( 17 \right )^{20}\equiv \left (16 \right )^{2} mod\ \left ( 5 \right )$ $\left( 17 \right )^{20}\equiv \left (5 \cdot 3+1 \right )^{2} mod\ \left ( 5 \right )$ $\left( 17 \right )^{20}\equiv \left (1 \right )^{2} mod\ \left ( 5 \right )$ hasil selesai sisa $17^{20}$ dibagi $5$ yaitu 1. Untuk mengerjakan soal modulo sangat dipengaruhi oleh tingkat kreatifitas kita, sebagai pola soal diatas bisa kita kerjakan dengan versi kreatifitas yang berbeda, $\left( 17 \right )^{20}= \left ( 5\cdot 3+2 \right )^{20}$ $\left( 17 \right )^{20}\equiv 2^{20}\ mod\ \left ( 5 \right )$ $\left( 17 \right )^{20}\equiv 4^{10}\ mod\ \left ( 5 \right )$ $\left( 17 \right )^{20}\equiv \left (-1 \right )^{10}\ mod\ \left ( 5 \right )$ $\left( 17 \right )^{20}\equiv 1^{10}\ mod\ \left ( 5 \right )$ Bentuk penulisan $13$ dibagi $4$ sisa $1$ yaitu $13\equiv 1\ mod\ \left ( 4 \right )$ untuk sementara bisa juga dituliskan $13\equiv -3\ mod\ \left ( 4 \right )$ tetapi pada hasil selesai dituliskan kembali sisa pembagian yaitu nol atau bilangan bundar positif dan kurang dari pembagi. Soal berikut mungkin bisa jadi contoh; Sisa $2^{2015}$ dibagi $9$ adalah... $\left( 2 \right )^{2015}= \left( 2^{3} \right )^{671} \cdot 2^{2}$ $\left( 2 \right )^{2015}\equiv \left( 8 \right )^{671} \cdot 4\ mod\ \left ( 9 \right )$ $\left( 2 \right )^{2015}\equiv \left( -1 \right )^{671} \cdot 4\ mod\ \left ( 9 \right )$ $\left( 2 \right )^{2015}\equiv \left( -1 \right )^{671} \cdot 4\ mod\ \left ( 9 \right )$ $\left( 2 \right )^{2015}\equiv -4\ mod\ \left ( 9 \right ) $ $\left( 2 \right )^{2015}\equiv 5\ mod\ \left ( 9 \right ) $ Hasil selesai sisa $2^{2015}$ dibagi $9$ yaitu $5$. Segitu dulu lach ya, berguru modulonya ntar besok kita coba dengan pola soal yang lain. Kalau ada yang ditanyakan atau ada yang salah pada kerjaan diatas silahkan dikomentari. Video pilihan khusus untuk Anda 😊 Masih menganggap matematika hanya hitung-hitungan semata, mari kita lihat kreativitas siswa ini; Share on Facebook Share on Twitter Share on Google+ Share on LinkedIn Subscribe to receive free email updates:
0 Response to "Belajar Modulo Dengan Cara Sederhana"
Post a Comment