Pada uji kompetensi tersebut diberikan beberapa soal latihan dan yang kita diskusikan disini yaitu dari soal tantangan. Soal-soal yang disajikan pada kurikulum ini banayk mengarah ke soal-soal olimpiade matematika. Seperti sebelumnya soal dan pembahasan uji kompetensi eksponen sudah kita diskusikan, kini mari kita mulai berdiskusi wacana bentuk akar;
1a. Tentukan nilai dari:
$ \sqrt[3]{2\sqrt{3\sqrt[3]{2\sqrt{3\sqrt[3]{2\sqrt{3\sqrt[3]{2\sqrt{3...}}}}}}}}$
Hint
Soal diatas agar tidak menyulitkan membacanya coba kita lihat polanya, polanya yaitu $ \sqrt[3]{2\sqrt{3}}$ yang ditulis setrik berulang menjadi $ \sqrt[3]{2\sqrt{3\sqrt[3]{2\sqrt{3\sqrt[3]{2\sqrt{3\sqrt[3]{2\sqrt{3...}}}}}}}}$
dan tanda "$ ...$" maksudnya 'dan seterusnya dengan contoh yang berulang'.
Untuk menuntaskan soal diatas coba kita selesaikan dengan pemisalan, misalkan:
$ \sqrt[3]{2\sqrt{3\sqrt[3]{2\sqrt{3\sqrt[3]{2\sqrt{3\sqrt[3]{2\sqrt{3...}}}}}}}}\ =\ a$
Dengan melihat pemisalan diatas, sehingga kini kita hanya mencari nilai $ a$, dengan mempangkatkan ruas kiri dan kanan dengan 3, sehingga kita peroleh:
$ 2\sqrt{3\sqrt[3]{2\sqrt{3\sqrt[3]{2\sqrt{3\sqrt[3]{2\sqrt{3...}}}}}}}\ =\ a^{3}$
Lalu ruas kiri dan kanan sama-sama kita bagi dengan 2, sehingga kita peroleh:
$ \sqrt{3\sqrt[3]{2\sqrt{3\sqrt[3]{2\sqrt{3\sqrt[3]{2\sqrt{3...}}}}}}}\ =\frac{1}{2} a^{3}$
Selanjutnya ruas kiri dan kanan sama-sama kita pangkatkan dengan 2, sehingga kita peroleh:
$ 3\sqrt[3]{2\sqrt{3\sqrt[3]{2\sqrt{3\sqrt[3]{2\sqrt{3...}}}}}}\ =\frac{1}{4} a^{6}$
Berikutnya ruas kiri dan kanan sama-sama kita bagi dengan 3, sehingga kita peroleh:
$ \sqrt[3]{2\sqrt{3\sqrt[3]{2\sqrt{3\sqrt[3]{2\sqrt{3...}}}}}}\ =\frac{1}{12} a^{6}$
Dengan mensubstitusikan nilai $ a$ pada ruas kiri, sehingga bentuknya menjadi:
$ a\ =\frac{1}{12} a^{6}$
$ 1\ =\frac{1}{12} a^{5}$
$ 12\ =\ a^{5}$
$ a=\sqrt[5]{12}$
1b. Tentukan nilai dari:
$ \sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{...}}}}}}$
Hint
Seperti soal (1a), soal diatas agar tidak menyulitkan membacanya coba kita lihat polanya, polanya yaitu $ \sqrt{2}$ yang ditulis setrik berulang menjadi $ \sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{...}}}}}}$
dan tanda "$ ...$" maksudnya 'dan seterusnya dengan contoh yang berulang'
Untuk menuntaskan soal diatas coba kita selesaikan dengan pemisalan, misalkan:
$ \sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{...}}}}}}\ =\ b$
Dengan melihat pemisalan diatas, sehingga kini kita hanya mencari nilai $ b$, dengan mempangkatkan ruas kiri dan kanan dengan 2, sehingga kita peroleh:
$ 2+\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{...}}}}}\ =\ b^{2}$
Lalu ruas kiri dan kanan sama-sama kita kurang dengan 2, sehingga kita peroleh:
$ \sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{...}}}}}\ =\ b^{2}-2$
Dengan mensubstitusikan nilai $ b$ pada ruas kiri, sehingga bentuknya menjadi:
$ b\ =\ b^{2}-2$
$ b^{2}-b-2=0$
Bentuk diatas sudah menjadi bentuk persamaan kuadrat, untuk memilih akar persamaan kuadrat salah satunya dengan trik memfaktorkan sehingga kita peroleh:
$ \left ( b-2 \right )\left ( b+1 \right )=0$
$ b-2=0\ atau\ b+1=0$
$ b+1=0$ sehingga $ b=-1$ tidak memenuhi alasannya akar kuadrat dari bilangan aktual kesudahannya yaitu bilangan positif.
Hasil dari soal diatas yang memenuhi yaitu $ b-2=0$ sehingga $ b=2$
1c. Tentukan nilai dari:
$ 1+\frac{1}{\sqrt{1+\frac{1}{\sqrt{1+\frac{1}{\sqrt{1+\frac{1}{\sqrt{...}}}}}}}}$
Hint
Soal diatas agar tidak menyulitkan membacanya coba kita lihat polanya, polanya yaitu $ 1+\frac{1}{\sqrt{...}}$ yang ditulis setrik berulang menjadi
$ 1+\frac{1}{\sqrt{1+\frac{1}{\sqrt{1+\frac{1}{\sqrt{1+\frac{1}{\sqrt{...}}}}}}}}$
dan tanda "$ ...$" maksudnya 'dan seterusnya dengan contoh yang berulang'.
Untuk menuntaskan soal diatas coba kita selesaikan dengan pemisalan, misalkan:
$ \sqrt{1+\frac{1}{\sqrt{1+\frac{1}{\sqrt{1+\frac{1}{\sqrt{1+\frac{1}{\sqrt{...}}}}}}}}}\ =\ c$
Dengan pemisalan diatas, sehingga kita peroleh:
$ 1+\frac{1}{\sqrt{1+\frac{1}{\sqrt{1+\frac{1}{\sqrt{1+\frac{1}{\sqrt{...}}}}}}}}\ =\ c^2$
kini kita hanya mencari nilai $ c^2$,
Bentuk soal sanggup kita rubah menjadi
$ 1+\frac{1}{c}=c^2$
$ c+1=c^3$
$ c^3-c-1=0$
Sampai pada langkah ini saya kehabisan kata-kata, eksklusif saya meminta tunjangan kepada wolframalpha dan diperoleh Solusi realnya yaitu bilangan irasional dengan pendekatan nilai $ c=1,3247...$
Soal kita membutuhka nilai $ c^2=(1,3247...)^2=1,7548...$
Pemisalan soal sanggup juga dilakukan berbeda, penyelesaian soal sanggup menjadi;
$ 1+\frac{1}{\sqrt{1+\frac{1}{\sqrt{1+\frac{1}{\sqrt{1+\frac{1}{\sqrt{...}}}}}}}}\ =\ c$
Dengan pemisalan diatas, sehingga kita peroleh:
$ 1+\frac{1}{\sqrt{c}}\ =\ c$
$ \frac{1}{\sqrt{c}}\ =\ c-1$
$ c \sqrt{c} - \sqrt{c} =\ 1$ (lalu dikuadratkan ruas kiri dan ruas kanan)
$ c^3 -2c^2+c=\ 1$
$ c^3 -2c^2+c-1=\ 0$
Sampai pada langkah ini saya kembali kehabisan kata-kata, dan kembali saya meminta tunjangan kepada wolframalpha dan diperoleh solusi realnya yaitu bilangan irasional dengan pendekatan nilai $ c=1,7549...$
Kata sahabat (yang saya anggap teman) untuk mencari solusi $ c^3-c-1=0$ atau $ c^3 -2c^2+c-1=\ 0$ sanggup diselesaikan dengan 'Metode Cardano' dimana metode ini gres saja saya dengar.
Jika pembaca ada wangsit lain yang mungkin lebih sederhana terhadap penyelesaian soal ini saya sangat berterimakasih.
2. Jika $ a,b$ yaitu bilangan orisinil dengan $ a\leq b $ dan $ \frac{\sqrt{3}+\sqrt{a}}{\sqrt{4}+\sqrt{b}}$ yaitu bilangan rasional, tentukan pasangan (a,b) (OSN 2005/2006)
Hint
$ \frac{\sqrt{3}+\sqrt{a}}{\sqrt{4}+\sqrt{b}}$ yaitu bilangan rasional sehingga dpat kita tuliskan sebuah persamaan;
$ \frac{\sqrt{3}+\sqrt{a}}{\sqrt{4}+\sqrt{b}}=\frac{m}{n}$,
dimana $ a, b, m, n$ yaitu bilangan orisinil serta $ m\ dan\ n$ keduanya relatif prima (FPB dari $ m\ dan\ n$ yaitu 1).
$ n\sqrt{3}+n\sqrt{a}=m\sqrt{4}+m\sqrt{b}$
$ n\sqrt{3}+n\sqrt{a}=2m+m\sqrt{b}$
$ n\sqrt{3}-2m=m\sqrt{b}-n\sqrt{a}$
$ \left (n\sqrt{3}-2m \right )^{2}=\left (m\sqrt{b}-n\sqrt{a} \right )^2$
$ 3n^2+4m^2-4mn\sqrt{3}=m^2b+n^2a-2mn\sqrt{ab}$
Karena $ a, b, m, n$ semuanya yaitu bilangan orisinil maka $ 4mn\sqrt{3}=2mn\sqrt{ab}$, sehingga $ \sqrt{ab}=\sqrt{12}$
kemungkinan pasangan $ \left (a,b \right )$ yaitu $ \left (1,12 \right ), \left (2,6 \right ), \left (3,4 \right )$
Jika $ a=1\ dan\ b=12$ maka $ \frac{\sqrt{3}+\sqrt{a}}{\sqrt{4}+\sqrt{b}}=\frac{\sqrt{3}+\sqrt{1}}{\sqrt{4}+\sqrt{12}}=\frac{1}{2}$ (diperoleh hasil bilangan rasional)
Jika $ a=2\ dan\ b=6$ maka $ \frac{\sqrt{3}+\sqrt{a}}{\sqrt{4}+\sqrt{b}}=\frac{\sqrt{3}+\sqrt{2}}{\sqrt{4}+\sqrt{6}}=\frac{1}{\sqrt{2}}$ (diperoleh hasil bukan bilangan rasional)
Jika $ a=3\ dan\ b=4$ maka $ \frac{\sqrt{3}+\sqrt{a}}{\sqrt{4}+\sqrt{b}}=\frac{\sqrt{3}+\sqrt{3}}{\sqrt{4}+\sqrt{4}}=\frac{\sqrt{3}}{2}$ (diperoleh hasil bukan bilangan rasional)
Pasangan (a,b) yaitu (1,12)
3. Nyatakan b dalam a dan c dari persamaan $ \frac{\sqrt[3]{b \sqrt{c}}}{\sqrt{c \sqrt[3]{a}}}=abc$
Hint
$ \frac{\sqrt[3]{b \sqrt{c}}}{\sqrt{c \sqrt[3]{a}}}=abc$
$ \frac{\sqrt[3]{b c^\frac{1}{2}}}{\sqrt{c a^\frac{1}{3}}}=abc$
$ \frac{b^{\frac{1}{3}} c^\frac{1}{6}}{c^{\frac{1}{2}} a^\frac{1}{6}}=abc$
$ \frac{b^\frac{1}{3}}{b}=\frac{a\cdot a^\frac{1}{6}\cdot c\cdot c^\frac{1}{2}}{c^\frac{1}{6}}$
$ b^\frac{-2}{3}=a^{1+\frac{1}{6}}\cdot c^{\frac{3}{2}-\frac{1}{6}}$
$ b^\frac{-2}{3}=a^\frac{7}{6}\cdot c^\frac{4}{3}$
$ b=a^\frac{-21}{12}\cdot c^\frac{-12}{6}$
$ b=a^\frac{-7}{4}\cdot c^{-2}$
4.Sederhanakan bentuk $ \sqrt[4]{49-20\sqrt{6}}$
Hint
$ \sqrt[4]{49-20\sqrt{6}}$
kita coba sederhanakan dengan menggunakan sifat
$ \sqrt{a}+\sqrt{b}=\sqrt{\left(a+b\right)+2\sqrt{ab}}$ atau
$ \sqrt{a}-\sqrt{b}=\sqrt{\left(a+b\right)-2\sqrt{ab}}$
$ =\sqrt[4]{49-20\sqrt{6}}$
$ =\sqrt{\sqrt{49-2\sqrt{600}}}$
$ =\sqrt{\sqrt{(25+24)-2\sqrt{25\cdot 24}}}$
$ =\sqrt{\sqrt{25}-\sqrt{24}}$
$ =\sqrt{5-2\sqrt{6}}$
$ =\sqrt{(3+2)-2\sqrt{3 \cdot 2}}$
$ =\sqrt{3} -\sqrt{2}$
5. tentukan nilai a dan b dari:
$ \frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+\frac{1}{\sqrt{4}+\sqrt{5}}+...+\frac{1}{\sqrt{1.000.000}+\sqrt{1.000.001}}=\sqrt{a}-\sqrt{b}$
Hint
Untuk mencoba menuntaskan soal diatas kita coba dengan menyederhanakan beberapa bentuk akar dari soal dengan trik merasionalkan penyebut;
$ \frac{1}{\sqrt{2}+\sqrt{3}}=\frac{1}{\sqrt{2}+\sqrt{3}}\times \frac{\sqrt{2}-\sqrt{3}}{\sqrt{2}-\sqrt{3}}=-\sqrt{2}+\sqrt{3}$
$ \frac{1}{\sqrt{3}+\sqrt{4}}=\frac{1}{\sqrt{3}+\sqrt{4}}\times \frac{\sqrt{3}-\sqrt{4}}{\sqrt{3}-\sqrt{4}}=-\sqrt{3}+\sqrt{4}$
$ \frac{1}{\sqrt{4}+\sqrt{5}}=\frac{1}{\sqrt{4}+\sqrt{5}}\times \frac{\sqrt{4}-\sqrt{5}}{\sqrt{4}-\sqrt{5}}=-\sqrt{4}+\sqrt{5}$
$ ... $
$ \frac{1}{\sqrt{999.999}+\sqrt{1.000.000}}=-\sqrt{999.999}+\sqrt{1.000.000}$
$ \frac{1}{\sqrt{1.000.000}+\sqrt{1.000.001}}=-\sqrt{1.000.000}+\sqrt{1.000.001}$
Dari bentuk yang sudah disederhanakan diatas bila kita jumlahkan menyerupai soal, maka soal berubah menjadi;
$ -\sqrt{2}+\sqrt{3}-\sqrt{3}+\sqrt{4}-\sqrt{4}+\sqrt{5}- ...-\sqrt{999.999}+\sqrt{1.000.000}-\sqrt{1.000.000}+\sqrt{1.000.001}$
$ = -\sqrt{2}+\sqrt{1.000.001}$
$ = \sqrt{1.000.001} -\sqrt{2}$
dengan melihat hasil selesai dan yang diminta soal yaitu $ \sqrt{a} -\sqrt{b}$ maka nilai a yaitu 1.000.001 dan b yaitu 2
6. Hitunglah $ \sqrt{54+14\sqrt{5}}+\sqrt{12-2\sqrt{35}}+\sqrt{32-10\sqrt{7}}=$
Hint
Untuk meyelesaikan soal ini konsep dasar yang kita pakai sama dengan konsep yang digunakan pada soal nomor 4 yaitu $ \sqrt{a}+\sqrt{b}=\sqrt{\left ( a+b \right )+2\sqrt{ab}}$ atau $ \sqrt{a}-\sqrt{b}=\sqrt{\left ( a+b \right )-2\sqrt{ab}}$
$ \sqrt{54+14\sqrt{5}}+\sqrt{12-2\sqrt{35}}+\sqrt{32-10\sqrt{7}}$
$ =\sqrt{54+2\sqrt{49\cdot 5}}+\sqrt{12-2\sqrt{7\cdot 5}}+\sqrt{32-2\sqrt{25\cdot 7}}$
$ =\sqrt{49}+\sqrt{5}+\sqrt{7}-\sqrt{5}+\sqrt{25}-\sqrt{7}$
$ =12$
7. Jika $ \left ( 3+4 \right )\left ( 3^2+4^2 \right )\left ( 3^4+4^4 \right )\left ( 3^8+4^8 \right )\left ( 3^{16}+4^{16} \right )\left ( 3^{32}+4^{32} \right )=\left ( 4^x-3^y \right )$, tentukan nilai x-y.
Hint
$ \left ( 3+4 \right )\left ( 3^2+4^2 \right )\left ( 3^4+4^4 \right )\left ( 3^8+4^8 \right )\left ( 3^{16}+4^{16} \right )\left ( 3^{32}+4^{32} \right )=\left ( 4^x-3^y \right )$
Soal sederhana diatas dengan sedikit kreatifitas sanggup kita selesaikan, soal sanggup kita rubah bentuk menjadi sebagai berikut;
$ \left ( 4^x-3^y \right ) = \left ( 4+3 \right )\left ( 4^2+3^2 \right )\left ( 4^4+3^4 \right )\left ( 4^8+3^8 \right )\left ( 4^{16}+3^{16} \right )\left ( 4^{32}+3^{32} \right )$
$ \left ( 4^x-3^y \right ) = \left ( 4-3 \right ) \left ( 4+3 \right )\left ( 4^2+3^2 \right )\left ( 4^4+3^4 \right )\left ( 4^8+3^8 \right )\left ( 4^{16}+3^{16} \right )\left ( 4^{32}+3^{32} \right )$
$ \left ( 4^x-3^y \right ) = \left ( 4^2-3^2 \right )\left ( 4^2+3^2 \right )\left ( 4^4+3^4 \right )\left ( 4^8+3^8 \right )\left ( 4^{16}+3^{16} \right )\left ( 4^{32}+3^{32} \right )$
$ \left ( 4^x-3^y \right ) = \left ( 4^4-3^4 \right )\left ( 4^4+3^4 \right )\left ( 4^8+3^8 \right )\left ( 4^{16}+3^{16} \right )\left ( 4^{32}+3^{32} \right )$
$ \left ( 4^x-3^y \right ) = \left ( 4^8-3^8 \right )\left ( 4^8+3^8 \right )\left ( 4^{16}+3^{16} \right )\left ( 4^{32}+3^{32} \right )$
$ \left ( 4^x-3^y \right ) = \left ( 4^{16}-3^{16} \right )\left ( 4^{16}+3^{16} \right )\left ( 4^{32}+3^{32} \right )$
$ \left ( 4^x-3^y \right ) = \left ( 4^{32}-3^{32} \right )\left ( 4^{32}+3^{32} \right )$
$ \left ( 4^x-3^y \right ) = \left ( 4^{64}-3^{64} \right )$
$ x=64\ dan\ y=64 \Rightarrow x-y=0$
Mohon perbaikan bila ada yang salah dan bila Anda punya alternatif pembahasan tidak ada salahnya kita berbagi, mari berdiskusi 😊
Contoh Proses Belajar Mengajar yang dianjurkan pada Kurikulum 2013, mungkin video berikut sanggup membantu kita dalam penerapan kurikulum 2013;
0 Response to "Uji Kompetensi Bentuk Akar Sma Kurikulum 2013 - Soal Dan Pembahasan [1.2]"
Post a Comment