Persamaan Garis Singgung Bundar Dari Titik Pada Bundar

Lingkaran ialah daerah kedudukan titik-titik yang berjarak sama terhadap sebuah titik tertentu yang terletak pada bidang datar [sebidang]. Jarak yang sama disebut jari-jari bundar dan sebuah titik tertentu disebut sentra lingkaran. Perkenalan singkat ihwal lingkarannya mungkin sudah cukup, alasannya ialah yang akan kita diskusikan disini ialah persamaan garis singgung bundar dari titik yang terletak pada lingkaran.
Permasalahan ini juga yang ditanyakan salah satu pelajar Indonesia yang sedang mempelajari ihwal persamaan garis singgung bundar dari titik pada bundar di salah satu Forum Matematika.

Mari berdiskusi:
Diketahui titik sentra bundar $O (a,b)$ dan sebuah titik $ P\ \left ( x_{1},y_{1} \right )$ pada lingkaran
Tentukan Persamaan garis singgung g yang melalui titik $ P\ \left ( x_{1},y_{1} \right )$
Penyelesaian:
Misal persamaan garis adalah
$ g:\ y-y_{1}=m\left ( x-x_{1} \right )$
dan persamaan bundar adalah
$ L:\ \left (x-a \right )^{2}+\left (y-b \right )^{2}=r^{2} $
OP ialah jari-jari (r), dan garis OP melalui O (a,b) dan $ P\ \left ( x_{1},y_{1} \right )$ sehingga persamaannya sanggup kita bentuk sebagai berikut:
$ \frac{(y-y_1)}{(y_2-y_1 )}=\frac{(x-x_1)}{(x_2-x_1 )}$
$ \frac{(y-y_1)}{(b-y_1 )}=\frac{(x-x_1)}{(a-x_1 )}$
$(y-y_1 )(a-x_1 )=(x-x_1 )(b-y_1 )$
$ ay-x_1 y-ay_1+x_1 y_1=bx-x y_1-bx_1+x_1 y_1$
$ (a-x_1 )y=(b-y_1 )x-bx_1+x_1 y_1+ay_1-x_1 y_1$
Gradient OP, $ m_{OP}=\frac{(b-y_1)}{(a-x_1 )} $
Garis OP dan garis g saling tegak lurus sehingga:
$ m_{OP}\times m_{g}=-1 $
$ \frac{(b-y_1)}{(a-x_1 )}\times m_{g}=-1 $
$ m_{g}=\frac{x_1-a}{b-y_1}$
Persamaan garis g adalah
$ y-y_1 = m_g (x-x_1)$
$ y-y_1=\frac{x_1-a}{b-y_1} (x-x_1)$
$ (y-y_1 )(b-y_1 )=(x_1-a )(x-x_1 )$
$ by-yy_1-by_1+y_1^2=xx_1-x_1^2-ax+ax_1$
$ by-yy_1-by_1+y_1^2-xx_1+x_1^2+ax-ax_1=0$
$ x_1^2-xx_1+ax-ax_1+y_1^2-yy_1+by-by_1=0$
$ x_1^2-ax_1+y_1^2-by_1=xx_1-ax+yy_1-by . . .(1)$

Titik $ P (x_1,y_1 )$ pada bundar sehingga diperoleh persamaan:
$ (x_1-a)^2+(y_1-b)^2=r^2$
$ x_1^2-2ax_1+a^2+y_1^2-2by_1+b^2=r^2$
$ x_1^2-ax_1-ax_1+a^2+y_1^2-by_1-by_1+b^2=r^2$
$ x_1^2-ax_1+y_1^2-by_1=r^2-b^2-a^2+ax_1+by_1 . . .(2)$

Dari persamaan (1)dan (2) diperoleh:
$ xx_1-ax+yy_1-by=r^2-b^2-a^2+ax_1+by_1$
$ xx_1-ax+yy_1-by+b^2+a^2-ax_1-by_1=r^2$
$ xx_1-ax_1-ax+a^2+yy_1-by-by_1+b^2=r^2$
$ (x-a) x_1+(a-x)a+(y-b)y_1+(b-y)b=r^2$
$ (x-a) x_1-(x-a)a+(y-b) y_1-(y-b)b=r^2$
$ (x-a)(x_1-a)+(y-b)(y_1-b)=r^2$
Kesimpulan:
Persamaan garis singgung bundar $ (x-a)^2+(y-b)^2=r^2 $ dari sebuah titik $ (x_1,y_1 ) $ pada bundar ialah :
$ (x-a)(x_1-a)+(y-b)(y_1-b)=r^2 $

Jika Pusat bundar (0,0) maka kita substitusi nilai a=0 dan b=0 maka persamaan garis singgung bundar $ x^2+y^2=r^2 $ dari sebuah titik $ (x_1,y_1 ) $ pada bundar ialah :
$(x)(x_1 )+(y)(y_1 )=r^2$

Untuk Persamaan Lingkaran setrik umum $ x^2+y^2+Ax+By+C=0 $
kita ketahui bahwa: $ a=-\frac{1}{2} A\ ;\ b=-\frac{1}{2} B\ ;\ r^{2}=\frac{1}{4}A^{2}+\frac{1}{4}B^{2}- C $
nilai $ a,\ b,\ dan\ r^2$ disubstitusikan ke $ (x-a)(x_1-a)+(y-b)(y_1-b)=r^2 $
Sehingga kita peroleh persamaan:
$(x+\frac{1}{2} A)(x_1+\frac{1}{2} A)+(y+\frac{1}{2} B)(y_1+\frac{1}{2} B)=\frac{1}{4} A^2+\frac{1}{4} B^2-C $

$ xx_1+\frac{1}{2} Ax+\frac{1}{2} Ax_1+\frac{1}{4} A^2+yy_1+\frac{1}{2} By+\frac{1}{2} By_1+\frac{1}{4} B^2=\frac{1}{4} A^2+\frac{1}{4} B^2-C $

$ xx_1+\frac{1}{2} Ax+\frac{1}{2} Ax_1+\frac{1}{4} A^2+yy_1+\frac{1}{2} By+\frac{1}{2} By_1+\frac{1}{4} B^2-\frac{1}{4} A^2-\frac{1}{4} B^2+C=0 $

$ xx_1+\frac{1}{2} Ax+\frac{1}{2} Ax_1+yy_1+\frac{1}{2} By+\frac{1}{2} By_1+C=0 $

Persamaan garis singgung bundar $ x^2+y^2+Ax+By+C=0 $ dari sebuah titik $ (x_1,y_1 )$ pada bundar ialah :
$ xx_1+ yy_1+ \frac{1}{2} Ax+\frac{1}{2} Ax_1+\frac{1}{2} By+\frac{1}{2} By_1+C=0 $

Dikoreksi kalau ada yang salah dan untuk mendownload file Download Persamaan Garis Singgung Lingkaran

Mari kita coba berguru geogebra dasar, menggambar grafik fungsi kuadrat;

Subscribe to receive free email updates:

0 Response to "Persamaan Garis Singgung Bundar Dari Titik Pada Bundar"

Post a Comment